Some solutions to 542 HW\#2.

MDP Exercise 2.2. Because $\left.\binom{X_{1}}{X_{2}} \right\rvert\, X_{3}$ is multivariate normal, it suffices to show that $\operatorname{Cov}\left(X_{1}, X_{2}\right) \mid X_{3}=0 \Longleftrightarrow \Sigma^{12}=0$. But

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right) \mid X_{3}=\left[\Sigma_{(12) \cdot 3}\right]_{12}=\left\{\left[\Sigma^{(12)}\right]^{-1}\right\}_{12},
$$

which $=0$ iff $\Sigma^{12}=0$.
MDP Exercise 3.19. Let $\Delta \equiv\left\{\delta_{i j}\right\}$ be a real symmetric $p \times p$ matrix such that $\Gamma \Delta \Gamma^{\prime}=\Delta \forall$ orthogonal matrices $\Gamma \equiv\left\{\gamma_{i j}\right\}$. Set $\Gamma=\operatorname{Diag}(-1,1, \ldots, 1)$ to see that $\delta_{12}=\cdots=\delta_{1 p}=0$. Similarly all off-diagonal $\delta_{i j}=0$, so Δ is a diagonal matrix. Because $\Gamma \Delta=\Delta \Gamma, \gamma_{i j} \delta_{j j}=\delta_{i i} \gamma_{i j}$ for all $i \neq j$. Now choose Γ such that $\gamma_{i j} \neq 0$ to conclude that $\delta_{i i}=\delta_{j j} \equiv \delta$, QED.

MDP Exercise 3.22. From (A.7) in Appendix A, the conditional distribution $F_{p-1, n-p+1}(\zeta Z)$ of $U \mid Z$ can be represented as a Poisson mixture of central F distributions:
(3.69) $F_{p-1, n-p+1}(\zeta Z)\left|Z, K \sim F_{p-1+2 K, n-p+1}, \quad K\right| Z \sim \operatorname{Poisson}(\zeta Z / 2)$.

Thus the conditional distribution of $U \mid K$ also can be represented as a mixture of central F rvs:

$$
\begin{equation*}
U \mid K \sim F_{p-1+2 K, n-p+1}, \tag{3.70}
\end{equation*}
$$

where, since $Z \sim \chi_{n}^{2}$, the mixing probabilities are now given by

$$
\begin{aligned}
\operatorname{Pr}[K=k] & =\mathrm{E}\{\operatorname{Pr}[K=k \mid Z]\} \\
& =\frac{1}{k!} \int_{0}^{\infty} e^{-\frac{\zeta z}{2}\left(\frac{\zeta z}{2}\right)^{k} \frac{1}{2^{\frac{n}{2}} \Gamma\left(\frac{n}{2}\right)} z^{\frac{n}{2}-1} e^{-\frac{z}{2}} d z} \\
\ldots & =\frac{\Gamma\left(\frac{n}{2}+k\right) \zeta^{k}}{\Gamma\left(\frac{n}{2}\right) k!(\zeta+1)^{\frac{n}{2}+k}} \\
& =\frac{\Gamma\left(\frac{n}{2}+k\right)}{\Gamma\left(\frac{n}{2}\right) k!}\left(1-\rho^{2}\right)^{\frac{n}{2}}\left(\rho^{2}\right)^{k},
\end{aligned}
$$

that is,

$$
\begin{equation*}
K \sim \text { Negative binomial }\left(\rho^{2}\right) \tag{3.72}
\end{equation*}
$$

MDP Exercise 4.1. From (4.11),

$$
\int_{S>0}|S|^{\frac{n-p+1}{2}} e^{-\frac{1}{2} \operatorname{tr} \Sigma^{-1} S} d S=c_{p, n}^{-1}|\Sigma|^{\frac{n}{2}},
$$

so

$$
\begin{aligned}
\mathrm{E}\left(|S|^{k}\right) & =\frac{c_{p, n}}{|\Sigma|^{\frac{n}{2}}} \int_{S>0}|S|^{\frac{n+2 k-p+1}{2}} e^{-\frac{1}{2} \operatorname{tr} \Sigma^{-1} S} d S \\
& =\frac{c_{p, n}}{|\Sigma|^{\frac{n}{2}}} c_{p, n+2 k}^{-1}|\Sigma|^{\frac{n+2 k}{2}} \\
& =|\Sigma|^{k} \cdot \frac{2^{p k} \Gamma_{p}\left(\frac{n}{2}+k\right)}{\Gamma_{p}\left(\frac{n}{2}\right)} .
\end{aligned}
$$

MDP Exercise 4.2. Clearly the range of (U, V) is contained in the Cartesian product $\{0<U<I\} \times\{V>0\}$. Conversely, for any (U, V) in this product, (S, T) is given uniquely by $S=V^{\frac{1}{2}} U V^{\frac{1}{2}^{\prime}}, T=V^{\frac{1}{2}}(I-U) V^{\frac{1}{2}^{\prime}}$, thus the mapping $(S, T) \mapsto(U, V)$ is 1-1 and onto the Cartesian product. The remainder of the solution is straightforward except perhaps for the Jacobian. For this, apply the chain rule to the sequence of mappings

$$
(S, T) \mapsto(S, V) \mapsto(U, V)
$$

and apply the extended combination rule to each of the intermediate mappings:

$$
\begin{aligned}
& \left|\frac{\partial(S, V)}{\partial(S, T)}\right|=\left|\frac{\partial V}{\partial T}\right|=1, \\
& \left|\frac{\partial(U, V)}{\partial(S, V)}\right|=\left|\frac{\partial U}{\partial S}\right|=|V|^{-\frac{p+1}{2}},
\end{aligned}
$$

since $V=S+T$ and $U=V^{-\frac{1}{2}} S V^{-\frac{1^{\prime}}{}{ }^{\prime}}$.
MDP Exercise 4.3. Use the relation $s_{i j}=s_{i i}^{1 / 2} r_{i j} s_{j j}^{1 / 2}$ to show that the Jacobian is

$$
\left|\frac{\partial\left(s_{12}, \ldots, s_{p-1, p}\right)}{\partial R}\right|=\prod_{i=1}^{p} s_{i i}^{\frac{p-1}{2}}
$$

MDP Exercise 4.4. Since $d\left(S^{-1}\right)=-S^{-1}(d S) S^{-1}$, the Jacobian of the mappine $W=S^{-1}$ (both symmetric matrices) is $\left|S^{-1}\right|^{p+1}$, from which the result follow.

Solution to Exercise 5.5. For general dimension p, Takemura's estimator can be written as

$$
\begin{equation*}
\hat{\Sigma}(S)=\int_{\mathcal{O}} \Psi^{\prime} T\left(\Psi S \Psi^{\prime}\right) \Delta T\left(\Psi S \Psi^{\prime}\right)^{\prime} \Psi d \nu(\Psi) \tag{1}
\end{equation*}
$$

Here $T\left(\Psi S \Psi^{\prime}\right)$ is the lower triangular square root of $\Psi S \Psi^{\prime}$ so

$$
T\left(\Psi S \Psi^{\prime}\right)\left[T\left(\Psi S \Psi^{\prime}\right)\right]^{\prime}=\Psi S \Psi^{\prime}
$$

and

$$
\Delta=\operatorname{Diag}\left(\delta_{1}, \ldots, \delta_{p}\right)=\sum_{j=1}^{p} \delta_{j} e_{j} e_{j}^{\prime}
$$

where $\delta_{j}=\frac{1}{n+p+1-2 l}$ and $e_{j}=(0, \ldots, 0,1,0, \ldots 0)^{\prime}$ is the j-th unit coordinate vector. Let $S=\Gamma D_{l} \Gamma^{\prime}$ be the spectral decomposition of S, where $l \equiv\left(l_{1} \geq \cdots \geq l_{p}>0\right)$ are the ordered eigenvalues of S and the columns of Γ are the corresponding unit eigenvectors. Because $\hat{\Sigma}_{O}(S)$ is orthogonally equivariant, $\hat{\Sigma}(S)=\Gamma \hat{\Sigma}\left(D_{l}\right) \Gamma^{\prime}$, and $\hat{\Sigma}\left(D_{l}\right)$ is diagonal:

$$
\begin{equation*}
\hat{\Sigma}\left(D_{l}\right)=D_{\phi(l)} . \tag{2}
\end{equation*}
$$

where $\phi(l)=\left(\phi_{1}(l) \geq \cdots \geq \phi_{p}(l)\right)$. Thus from (1) and (2),

$$
D_{\phi(l)}=\int_{\mathcal{O}} \Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right) \Delta T\left(\Psi D_{l} \Psi^{\prime}\right)^{\prime} \Psi d \nu(\Psi)
$$

where now

$$
T\left(\Psi D_{l} \Psi^{\prime}\right)\left[T\left(\Psi D_{l} \Psi^{\prime}\right)\right]^{\prime}=\Psi D_{l} \Psi^{\prime}
$$

so

$$
\Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right)\left[\Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right)\right]^{\prime} \stackrel{(*)}{=} D_{l} .
$$

and

$$
D_{l}^{-1 / 2} \Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right)\left[D_{l}^{-1 / 2} \Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right)\right]^{\prime} \stackrel{(* *)}{=} I
$$

Therefore

$$
\begin{aligned}
\phi_{i}(l) & =e_{i}^{\prime} D_{\phi(l)} e_{i} \\
& =e_{i}^{\prime}\left[\int_{\mathcal{O}} \Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right)\left(\sum_{j} \delta_{j} e_{j} e_{j}^{\prime}\right) T\left(\Psi D_{l} \Psi^{\prime}\right)^{\prime} \Psi d \nu(\Psi)\right] e_{i} \\
& =\sum_{j=1}^{p} \delta_{j} \int_{\mathcal{O}}\left[e_{i}^{\prime} \Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right) e_{j}\right]^{2} d \nu(\Psi) \\
& =\sum_{j=1}^{p} \delta_{j} \int_{\mathcal{O}}\left(\left[\Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right)\right]_{i j}\right)^{2} d \nu(\Psi) \quad \equiv \sum_{j=1}^{p} \delta_{j} c_{i j} .
\end{aligned}
$$

Lemma. Define $w_{i j}=c_{i j} / l_{i}$. The matrix $W \equiv\left\{w_{i j}\right\}$ is nonnegative and doubly stochastic, i.e., $\sum_{i} w_{i j}=\sum_{j} w_{i j}=1$. (Note that $c_{i j}, w_{i j}$, and W depend on l and that $w_{i j}(l)$ is scale-invariant: $w_{i j}(a l)=a w_{i j}(l)$ for any real $a>0$.)

Proof. Nonnegativity is clear. Next,

$$
\begin{aligned}
l_{i} \sum_{j} w_{i j}=\sum_{j} c_{i j} & =\sum_{j} \int_{\mathcal{O}}\left(\left[\Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right)\right]_{i j}\right)^{2} d \nu(\Psi) \\
& =\int_{\mathcal{O}} \sum_{j}\left(\left[\Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right)\right]_{i j}\right)^{2} d \nu(\Psi) \\
& \stackrel{(* * *)}{=} \int_{\mathcal{O}} l_{i} d \nu(\Psi)=l_{i}
\end{aligned}
$$

where $\left({ }^{* * *}\right)$ follows from $\left(^{*}\right)$; thus $\sum_{j} w_{i j}=1$. Finally,

$$
\begin{aligned}
\sum_{i} w_{i j}=\sum_{i} \frac{c_{i j}}{l_{i}} & =\sum_{i} \frac{1}{l_{i}} \int_{\mathcal{O}}\left(\left[\Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right)\right]_{i j}\right)^{2} d \nu(\Psi) \\
& =\int_{\mathcal{O}} \sum_{i}\left(\left[D_{l}^{-1 / 2} \Psi^{\prime} T\left(\Psi D_{l} \Psi^{\prime}\right)\right]_{i j}\right)^{2} d \nu(\Psi) \\
& \stackrel{(* * *)}{=} \int_{\mathcal{O}} 1 d \nu(\Psi)=1,
\end{aligned}
$$

where $\left({ }^{* * * *}\right)$ follows from $\left({ }^{* *}\right)$; thus $\sum_{j} w_{i j}=1$.
Now consider the case $p=2$. From (3),

$$
\begin{aligned}
\phi_{1} & =\left(\delta_{1} w_{11}+\delta_{2} w_{12}\right) l_{1}=\left[\delta_{1} w_{22}+\delta_{2}\left(1-w_{22}\right)\right] l_{1}, \\
\phi_{2} & =\left(\delta_{1} w_{21}+\delta_{2} w_{22}\right) l_{2}=\left[\delta_{1}\left(1-w_{22}\right)+\delta_{2} w_{22}\right] l_{2},
\end{aligned}
$$

since W is doubly stochastic. Thus it suffices to show that

$$
w_{22} \equiv w_{22}\left(l_{1}, l_{2}\right)=\frac{\sqrt{l_{1}}}{\sqrt{l_{1}}+\sqrt{l_{2}}}
$$

Because $w_{22}\left(l_{1}, l_{2}\right)$ is scale-invariant, it suffices to show that

$$
\begin{equation*}
w_{22}(a, 1)=\frac{\sqrt{a}}{\sqrt{a}+1} . \tag{4}
\end{equation*}
$$

The group of 2×2 orthogonal matrices is the disjoint union $\mathcal{O}=\mathcal{O}^{+} \cup \mathcal{O}^{-}$, where

$$
\begin{aligned}
\mathcal{O}^{+} & =\left\{\left.\Psi_{+}(\theta) \equiv\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \right\rvert\, 0 \leq \theta<2 \pi\right\} \\
\mathcal{O}^{-} & =\left\{\left.\Psi_{-}(\theta) \equiv\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right) \right\rvert\, 0 \leq \theta<2 \pi\right\}
\end{aligned}
$$

By symmetry,

$$
\begin{aligned}
w_{22}(a, 1) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\left[\Psi_{+}(\theta)^{\prime} T\left(\Psi_{+}(\theta) \operatorname{Diag}(a, 1) \Psi_{+}(\theta)^{\prime}\right)\right]_{22}\right)^{2} d \theta \\
& \stackrel{(\dagger)}{=} \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{a \cos ^{2} \theta}{a \cos ^{2} \theta+\sin ^{2} \theta} d \theta \\
& \stackrel{(\ddagger)}{=} \frac{\sqrt{a}}{\sqrt{a}+1} .
\end{aligned}
$$

Notes: 1. For (\dagger), first show that

$$
T\left(\Psi_{+}(\theta) \operatorname{Diag}(a, 1) \Psi_{+}(\theta)^{\prime}\right)=\left(\begin{array}{cc}
t_{11} & 0 \\
t_{21} & t_{22}
\end{array}\right)
$$

with

$$
t_{11}=a \cos ^{2} \theta, \quad t_{21}=\frac{(a-1) \sin \theta \cos \theta}{\sqrt{a \cos ^{2} \theta+\sin ^{2} \theta}}, \quad t_{22}^{2}=\frac{a}{a \cos ^{2} \theta+\sin ^{2} \theta} .
$$

2. A nice derivation of (\ddagger) is given by our student Zhen Miao, as follows:

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{a \cos ^{2} \theta}{a \cos ^{2} \theta+\sin ^{2} \theta} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{a}{a+\tan ^{2} \theta} d \theta=\frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{a}{a+\tan ^{2} \theta} d \theta \\
& \quad=\frac{2}{\pi} \int_{0}^{\infty} \frac{a}{a+t^{2}} \frac{d t}{1+t^{2}}=\frac{2}{\pi} \frac{a}{1-a}\left[\int_{0}^{\infty} \frac{d t}{a+t^{2}}-\int_{0}^{\infty} \frac{d t}{1+t^{2}}\right] \\
& \quad=\frac{2}{\pi} \frac{a}{1-a}\left[\frac{1}{\sqrt{a}}-1\right] \int_{0}^{\infty} \frac{d t}{1+t^{2}}=\frac{2}{\pi} \frac{\sqrt{a}}{1+\sqrt{a}} \frac{\pi}{2}=\frac{\sqrt{a}}{1+\sqrt{a}} .
\end{aligned}
$$

Exercise A.19. Prove Fact A.4: If $f(x, y)>0$ and $(*) \frac{\partial^{2} \log f}{\partial x \partial y} \geq 0$ on $A \times B$ then f is TP2.
Solution. $(*) \Rightarrow \frac{\partial \log f\left(x_{2}, y\right)}{\partial y} \geq \frac{\partial \log f\left(x_{1}, y\right)}{\partial y}$ when $x_{2}>x_{1}$. This implies that $\log f\left(x_{2}, y\right)-\log f\left(x_{1}, y\right)$ is nondecreasing in y, which is equivalent to (A.2).

Exercise 6.37c. Let $U(p, r, n)$ denote the null $(\mu=0)$ distribution of $|U|$. ($U(p, r, n)$ is called Wilks' distribution.) Show that this distribution can be represented as the product of independent Beta distributions:

$$
\begin{equation*}
U(p, r, n) \sim \prod_{i=1}^{r} B\left(\frac{n-p+i}{2}, \frac{p}{2}\right) \tag{6.33}
\end{equation*}
$$

where the Beta variates are mutually independent.
Solution. Here $|U| \equiv \frac{|T|}{\left|X X^{\prime}+T\right|}$. Write $X=\left(X_{1}, X_{2}\right)$ with $X_{1}: p \times 1$ and $X_{2}: p \times(r-1)$, so

$$
\begin{equation*}
|U|=\frac{|T|}{\left|X_{2} X_{2}^{\prime}+T\right|} \cdot \frac{\left|X_{2} X_{2}^{\prime}+T\right|}{\left|X_{1} X_{1}^{\prime}+X_{2} X_{2}^{\prime}+T\right|} \equiv A \cdot B . \tag{1}
\end{equation*}
$$

Because $\frac{|T|}{\left|X_{2} X_{2}^{\prime}+T\right|}=\frac{1}{\left|X_{2}^{\prime} T^{-1} X_{2}+I_{r}\right|}$, it follows from Exercise 6.37a that

$$
\begin{equation*}
\frac{|T|}{\left|X_{2} X_{2}^{\prime}+T\right|} \Perp\left(X_{2} X_{2}^{\prime}+T\right) \Perp X_{1}, \tag{2}
\end{equation*}
$$

hence $A \Perp B$. Because $A \sim U(p, r-1, n)$ and

$$
\begin{aligned}
B=\frac{1}{X_{1}^{\prime}\left(X_{2} X_{2}^{\prime}+T\right)^{-1} X_{2}+1} & \sim B\left(\frac{n+(r-1)-p+1}{2}, \frac{p}{2}\right) \\
& =B\left(\frac{n+r-p}{2}, \frac{p}{2}\right),
\end{aligned}
$$

the result (6.33) follows by induction.

